
Characterizing the Security Facets of IoT Device Setup
Han Yang

Dalhousie University
Halifax, Canada
hn252486@dal.ca

Carson Kuzniar
Dalhousie University

Halifax, Canada
carson.kuzniar@dal.ca

Chengyan Jiang
Dalhousie University

Halifax, Canada
ch614775@dal.ca

Ioanis Nikolaidis
University of Alberta
Edmonton, Canada

nikolaidis@ualberta.ca

Israat Haque
Dalhousie University

Halifax, Canada
israat@dal.ca

Abstract
In this work, we characterize the potential information leakage
from IoT platforms during their setup phase. Setup involves an IoT
device, its “app”, and a cloud-based service. We assume that the
on-device firmware is inaccessible, e.g., read-protected. We focus on
the combination of information that can be extracted from analyz-
ing the app and the local communication between the app and the
IoT device. An attacker can trivially obtain the app, analyze its op-
eration, and potentially eavesdrop on the wireless communication
occurring during the setup phase. We develop a semi-automated
general methodology involving off-the-shelf tools to examine infor-
mation disclosure during the setup phase. We tested our methodol-
ogy on twenty commodity-grade IoT devices. The outcome reveals
a wide range of device-dependent choices for encryption at vari-
ous layers and the potential for exposure of, among other things,
device-identifying information and local networking (WiFi) creden-
tials. Our methodology contributes towards a means to assess and
“certify” IoT devices.

CCS Concepts
• Networks → Mobile and wireless security; Home networks;
• Security and privacy;

Keywords
Smart Home; IoT; Setup Security; Information Leakage
ACM Reference Format:
Han Yang, Carson Kuzniar, Chengyan Jiang, Ioanis Nikolaidis, and Israat
Haque. 2024. Characterizing the Security Facets of IoT Device Setup. In
Proceedings of the 2024 ACM Internet Measurement Conference (IMC ’24),
November 4–6, 2024, Madrid, Spain. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3646547.3688433

1 Introduction
The deployment of consumer-grade Internet of Things (IoT) de-
vices is growing as a result of the trend for “smart homes” because
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IMC ’24, November 4–6, 2024, Madrid, Spain
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0592-2/24/11
https://doi.org/10.1145/3646547.3688433

of the ease of installation and convenience of operation they usu-
ally exhibit. There are a plethora of commonplace applications
automated by IoT devices in a smart home, such as adjusting the
thermostat, scheduling the brewing of coffee, detecting movement
using cameras, (un)locking doors, etc., and they often involve also
a smartphone application for convenience of use and configuration.
Smart home IoT devices are expected to reach 100 million in the US
alone by 2028 [23]. Such growth also brings security, privacy, and
safety risks as these devices, if compromised, can be pivot points for
intruders to interfere with the operation of a smart home [30, 31].
A typical smart home IoT platform comprises of (a) IoT devices, (b)
their controlling applications (apps), and (c) the back-end cloud-
based applications [2]. The applications on the app and the cloud
can control and manage the device, adding also value, e.g., in the
form of analytics, derived from the device data. The life cycle of a
newly acquired IoT platform starts by turning on the IoT device,
setting it up for operation, and using it.

The three platform components (device, app, and cloud) often
exchange sensitive information (e.g., identity information) to estab-
lish preliminary trust before a device can be fully used. For example,
consider the case where a user clicks the "power on" button of a
smart plug app. It must already have established trust with the
command initiator (app), command handler (cloud), and the target
(smart plug) to respond accordingly and to keep the applications
informed about the state of the plug. The pre-established trust re-
quires exchanging sensitive information from a device to an app
and cloud during the platform setup phase. However, as we detail
in this paper, sensitive information (e.g., Device_ID or login cre-
dentials) could be revealed, potentially allowing attackers to fully
control a device [7, 32]. Thus, assessing vulnerabilities of the setup
phase and their consequences is crucial for the secure operations
of smart home IoT devices. For the most part, existing works have
taken an occasional interest in the setup phase, e.g., unexpected
pairing [1, 6], protocol-oriented flaws leading to potential informa-
tion leakage [19, 34], etc. We posit that the information leakage can
have significant downstream effects on users and services, and a
systematic assessment is necessary.

Compared to previous research [1, 6, 19, 34] related to the setup
phase, we attempt to answer a somewhat more pragmatic question:
if we were to purchase today a handful of IoT devices for different
smart home tasks, what fraction of those involve a setup phase that
leaks sensitive information (SI)? We study a sample of twenty IoT
devices and find that two-thirds involve some degree of leaking
SI. The extent to which we found exposed SI is directly influenced

https://doi.org/10.1145/3646547.3688433
https://doi.org/10.1145/3646547.3688433

IMC ’24, November 4–6, 2024, Madrid, Spain Han Yang, Carson Kuzniar, Chengyan Jiang, Ioanis Nikolaidis & Israat Haque

by the methodology we follow. Our methodology is explained in
the next sections and involves steps to identify the SI and its use
across the platform. It is conceivable that an improved methodology
would find a larger fraction of devices with exposed SI. A fraction of
two-thirds can already be considered alarming. The lack of stronger
safeguards during setup may be explained by an attitude of treating
setup as an unlikely target for an attacker because (i) in most cases,
it takes place only once, (ii) at an unpredictable point in time, and
(iii) is brief in overall duration. As we later explain, reasonable
threat models exist despite the eccentricities of the setup phase.

In summary, we identify a new possible SI exposure channel
during the setup phase, where users’ apps and devices establish
local communication with each other. Moreover, we develop a semi-
automated generalized assessment methodology based on the fol-
lowing research questions:
(RQ1)Which devices are "beaconing" sensitive information? Wedefine
beaconing as public over-the-air (OTA) information transmission
which can be captured by (nearby) packet sniffers and are interested
in the separation between beaconing and non-beaconing data.
(RQ2) Can app analysis be used to break channel encryption? Many
vendors encrypt sensitive information during the local communica-
tion; however, it is possible, including for any attacker, to obtain
and analyze the corresponding app to determine the used encryp-
tion/decryption logic.
(RQ3) Which exposed information is sensitive? RQ1 and RQ2 allow
us to generate a list of potentially exposed information during local
communication. We target assessing the list to discover information
that qualifies as sensitive based on its potential downstream effects.

We begin by capturing the OTA traffic during the device setup
process. Then, we apply binary analysis to the traces to recover
human-readable information. For devices where this process fails,
we recruit the help of decompilation of the corresponding app. Fi-
nally, we intercept the traffic between the app and the cloud to verify
that the information recovered from the traces is used throughout
the platform. By focusing our approach on setup traces and accom-
panying apps, we eschew cumbersome analysis techniques, e.g.,
device firmware reverse engineering, and more importantly, obtain
a better understanding of what information is readily available in
the wild.

Twenty devices, from a total of 16 different vendors, for various
representative (e.g., plug, camera) smart home tasks were acquired.
The summary of findings is that eleven were found to leak De-
vice_ID, eight exposed users’ home access point WiFi credentials,
and two revealed app credentials. While some platforms are secure,
many expose sensitive information even if they apply some form
of encryption or other security measures.

2 Background
Sensitive Information. We define two types of sensitive informa-
tion with respect to authentication or confidentiality.
Device_ID is the unique device identifier that the app, cloud, and
device agree upon using a specific device instance authentication.
Device_ID may be hard-coded or dynamically assigned/bound by
the cloud, e.g., the app submits the device model to the cloud, which
assigns a Device_ID to the device [7, 32]. Similarly, a Construct_ID

is the information used to derive the Device_ID. For example. Con-
struct_ID could be a serial number submitted to the cloud, with the
cloud subsequently generating Device_ID and sharing it with both
device and app.
Credentials are any information required to access a system, service,
or resource, e.g., home-AP WiFi credentials, app/user account, and
password. Potential consequences of credential information expo-
sure can be severed, including unhindered access by an attacker to
a user’s home-AP, network, data, app online accounts, etc.
PlatformStates.There are three cloud-based IoT platform architec-
tures insofar the interaction of the three components (device, app,
cloud) is concerned: cloud-in-the-middle (CITM), trigger-action
(TA), and app-in-the-middle (AITM), with CITM being the most
common one [20]. We focus on CITM-based smart home IoT plat-
forms. In CITM, the device and the app depend on the cloud service
to function correctly after any initial setup. This paradigm allows
the device to operate and communicate with the cloud without the
app’s ever-present involvement. We also distinguish the following
macro states:
Local configuration: The three components communicate necessary
information in this initial setup state, e.g., the device shares De-
vice_ID or Construct_ID with the app, which responds with the
home-AP WiFi credentials to enable Internet access for operations
in the subsequent states. We subsequently call local communication
the app–device communication, which usually uses Bluetooth Low
Energy (BLE) or WiFi. Standard pairing (central-peripheral mode)
is used in BLE during local communication. WiFi communication
is further split into AP-mode and EZ-mode (e.g., SmartConfig [15]).
EZ-mode accounts for only a small fraction (8% of IoT apps support
this mode [19]) and involves special app-generated 802.11 frames.
Most WiFi-based setups involve the device starting in AP-mode
with a DHCP server to assign an IP address to a connected smart-
phone, establishing communications between the app and device.
Remote binding: In this state, both the Device_ID and the user’s
unique account information must be submitted to the cloud for
registration to ensure that each device instance is correctly linked
with the user account, and the cloud maintains state to reflect this
mapping relationship.
Operation: The setup process transitions from the local configura-
tion to the operation state, where the device is fully configured
and in use. Suppose a user clicks a smart camera app’s "ON" but-
ton to start recording, and the command is issued via the cloud
server. The corresponding commands include the Device_ID to
specify which device to act on. We call such a request/response
cycle remote command. Often, a remote command to reset the de-
vice (remote reset) is also supported to force a transition back to
the local configuration state. Based on our observation, many de-
vices share Device_ID (even if hard-coded) with apps during local
communication to ensure the apps have access to the Device_ID.
Threat Model. Despite the unpredictable timing, brief process,
etc, in the setup phase, particular threat models are still within
the realm of possibility. For example, an opportunistic attacker
passively and continuously sniffs OTA WiFi and BLE traffic across
all channels in a high IoT device density (e.g., apartment complex)
environment. Given the popularity of IoT smart home devices,

Characterizing the Security Facets of IoT Device Setup IMC ’24, November 4–6, 2024, Madrid, Spain

they can, after some time, witness the setup of a new device. Non-
opportunistic attacks are also possible, assuming access to side-
information informing them of the purchases/acquisition of a new
IoT device by a user which is reasonably expected to be set up soon
afterwards. The attackers may not have prior knowledge of the
users’ home environments (e.g., device models). Therefore, they
cannot conduct real-time attacks like man-in-the-middle (MITM).
However, they can infer information about the introduction of a
new platform and device (e.g., based on MAC address, AP-Mode
SSID name, etc.) using the sniffed data. If their aim is to harvest
sensitive information like IDs, users’ home WiFi credentials, etc.
from the sniffed local communication, then it aligns with the SI we
have shown to be exposed. Subsequently, with the SI extracted, after
the devices’ setup finishes, attackers take advantage of the platform
state design flaws remotely, enabling at least three categories of
attacks, remote device hijacking, command injection and phantom
devices [7, 32] discussed in Section 5.

3 Methodology
Our methodology is built on answering the research questions out-
lined in Section 1. Our approach applies to IoT devices which users
set up using smartphone apps without the aid of input interfaces
like keyboards or touchscreens. We assume the accompanying app
can be identified using the device’s MAC address and downloaded
from the marketplace1. Fig. 1 shows the high-level overview of our
workflow, beginning with the raw data sniffed OTA during setup
and producing exposed and verified sensitive information.
Data Collection.We assess the setup phase of 20 devices setup us-
ing 14 IoT apps. We follow the instructions provided with each IoT
device for the standard setup procedure on the Android platform.
Simultaneously, we set a sniffer to capture the OTA traffic data of
the app device local communication, producing the monitor dataset.
The sniffer selection depends on the chosen device and its setup
method. ForWiFi-based setups, we use a BCM4387 network adapter
in monitor mode, and for BLE, we run a Nordic nrf52840 board [27].
The monitor dataset contains all the WiFi or Bluetooth frames cap-
tured over the air, at Layer 2 and all layers on top encapsulated in
the frames, during the local configuration. We capture a wide range
of 802.11 frames for WiFi, including Beacon, RTS, CTS, ACK, and
Probe. For devices not applying link layer encryption, like WPA2,
higher layer headers, protocols (e.g., TCP, UDP, HTTP, etc) and
application payload information are also available. For BLE capture,
the frame data includes advertisements, connection requests, etc.
When no link layer encryption is applied, we check the Attribute
Protocol (ATT) of the application-layer payload exchange.

Once the device has completed local configuration, we begin
to collect data at the home-AP, a Raspberry Pi 4 Model B running
hostapd [21] and netsniff-ng [22] for packet capture. This AP
also enables app-cloud communication and produces the AP dataset
traffic capture. The AP dataset captures Layer 3 and higher (TCP,
TLS, etc.) app-cloud communications. All traffic datasets are stored
in .pcap format.
Binary analysis (RQ1). At step ① (see Figure 1), we begin by
inspecting local configuration traffic, as recorded in the monitor

1We use Android as our app platform because it is open source, but the high-level
methodology can be extended to other smartphone operating systems.

dataset, to identify exposed information, i.e., parse the raw data to
human-readable format (e.g., ASCII, JSON) using standard tools like
Wireshark and Tshark. For serialized data not directly readable
(e.g., compressed by gzip), we apply Binwalk [26] to find potential
headers in the payload. Binwalk’s limitation of not recognizing
chunks that lack magic value headers is handled using protocol-
specific tools like protoscope [24]. Once the encoding format is
identified, we use Python scripts to decode the raw data using the
identified headers. We refer to binary data that can be parsed/de-
coded using binary analysis alone as beaconing data and proceed
to sensitivity analysis. For traffic where we cannot create complete
human-readable information, we move to Android Package Kit
(APK) analysis.
APK Analysis (RQ2). We extract additional information from the
setup traces by performing APK analysis on the app through the
following steps.
APK Decompilation: We use jadx [17] to decompile the Dalvik
byte-code stored in the APK back into a high-level Java/Kotlin code.
Many Android apps utilize a compiled native code library (.so) by
invoking Java Native Interface (JNI) to prevent decompilation. We
check for such safeguards using IDA-pro [14] to disassemble the
native code.
Locating Functions: In many consumer IoT devices’ apps, it is chal-
lenging to isolate the app code critical to local communication. Also,
over half of the tested vendors performed APK obfuscation to hin-
der understanding the decompiled code (e.g., ProGuard obfuscation
[13]). Thankfully, most of the tested IoT devices send APK hard-
coded imprints (e.g., UUIDs, device models) to the app during local
communication. We use imprints identified in step ① and static taint
analysis to guide us to the location of critical code snippets. We use
FlowDroid [3] to mark the hard-coded imprints as the taint source
and record function calls it processes. We consider the correspond-
ing function calls as highly involved in network traffic exchanges or
cryptographic usage as taint sink. Step ② shows an exposed model
name being used to find the relevant cryptographic function in the
APK. We focus on this final set of pertinent code snippets, which
define the code logic (e.g., libraries, crypto). Fig. 2 shows an example
of pseudocode for a relevant function, where we uncover the logic
used by the app for decrypting messages using device_model.
Key reproduction: When investigating relevant code snippets, we
uncover two situations: the data is encoded by customized protocols
(e.g., SmartConfig [15]) or protected by encryption. In the former
case, parsing non-beaconing data back to human-readable text is
less challenging since the decompiled APK exposes the encoding/de-
coding structure. Allowing the authoring of a script, albeit a custom
one, to decode the setup traffic. In the case of encrypted data, we at-
tempt to extract the secret key. Using only the app and setup traces,
we identify two situations where it is possible to decrypt the traffic.
Either the key is hard-coded in the APK or derived from known
information. Fig. 2 presents an example, where the device_model
appended to an APK hard-coded magic string is used to generate a
key to guard subsequent communications. Analyzing the decom-
piled code, we can discover this logic and easily recreate the same
key,without access to the IoT device, essentially evaluating whether
the implemented cryptographic scheme is robust. We combine the
information successfully decrypted/decoded from both step ① and
step ② to form the exposed info.

IMC ’24, November 4–6, 2024, Madrid, Spain Han Yang, Carson Kuzniar, Chengyan Jiang, Ioanis Nikolaidis & Israat Haque

Binary Analysis

{Ciphertext: "1abf...3c"} ->"mywifipassd"

command#1:"turn off"
...
device_id:"myid"

Beaconing ("mymodel")
gzip, protobuf, X.509...

...
command#n:"reset"
...
HTTP/1.1 DELETE
https://myvendor.../myid

command#2:"turn on"
...
device_id:"myid" Device_ID == "myid"

cipher.init("mymodel")
str:"myid"
passwrd:"mywifipasswd"
...
api-key:"12-34-56"

1f 8b 08......3f 2a 56
08 6a 45......56 9a 8c

...
30 c1 31......72 05 ab

app SDK

APK Analysis
Sensitity Analysis1

2
3

Figure 1: Assessment workflow; traces are combined with APK analysis to identify exposed information.

Sensitive information identification (RQ3). Finally, we explore
the information identified and extracted from analysis of the moni-
tor dataset at the previous steps, to determine how sensitive it is.
Credential information, e.g., home-AP WiFi credentials, app’s user
name and password, is self-explanatory and provable based on the
information entered during the setup. Additional sensitive informa-
tion can be challenging to infer based on plaintext headers alone.
For example, device information, model, and MAC address vary
among vendors and may not be used throughout the platform. Yet,
we have to establish if any of this information has any consequence
on the operation of the platform. Because we cannot access device
firmware, we follow a Device_ID verification method based on the
observation that Device_ID is transmitted from the app to the cloud
as part of remote commands. Thus, we can verify the Device_ID by
finding common information between the transmitted remote com-
mands and the exposed information collected in steps ① & ②. This
process is highlighted in step ③, where the string “myid” occurs in
the setup information and every device command.

When searching for the Device_ID, we look for a fixed persistent
value. Consequently, no matter which remote command is transmit-
ted (e.g., reset or turn on/off device), the Device_ID is assumed to
be attached to each message. For our verification process, we want
to compare the exposed info across different types of remote com-
mands to see if there are repeated matches. Hence, once the local
configuration has finished and the device entered normal operation,
we will study the AP dataset and attempt to bypass the security
protocol protection (e.g., TLS) of the traffic exchanges between the
app and the cloud. We develop the following two approaches to
intercept the remote commands. Note that since Construct_ID con-
tributes to the formation of the Device_ID, it is possible to verify
its presence only after the whole Device_ID generation exchanges
have been observed.
Traffic Interception.We use mitmproxy [8] to set up a proxy to
intercept traffic exchanges between an app and the cloud during the

1 func decrypt_message (http_response)
2 byte [] cipher_bytes = http_response . payload . toByte () ;
3 Str ing device_model = "D8123456EC" ;
4 Str ing magicString = "magic " ;
5 Str ing keyStr = MD5(device_model + magicString) ;
6 . . .
7 SecretKeySpec privateKey = generateSecret (keyStr) ;
8 Cipher cipher = Cipher . get Instance ("AES/CBC / . . . ") ;
9 cipher . i n i t (Cipher .DECRYPT_MODE, privateKey , IV) ;
10 Str ing pla intext = cipher . doFinal (c ipher_bytes) ;
11 . . .

Figure 2: Example identified "setup" crypto function.

{"did": "CforkLLzBQeClP==",
"meta": "cam-1.0.3"}

{"did": "CforkLLzBQeClP==",
"Current State": "On",
"Command": "Reset"}

{"did": "CforkLLzBQeClP==",
"Current State": "Off",
"Command": "Camera On"}

R
em

ote C
om

m
ands

Intercepted

...

Exposed

 O
TA

Figure 3: Sample device Device_ID verification.

operation state. We use a rooted smartphone and move the proxy’s
certificate from the users’ trust store to the system trust store. This
process causes the app to trust the proxy’s certificate; however,
many tested IoT platforms have pre-trust certificates (i.e., they only
accept public keys or hostnames from specific servers’ certificates).
Based on our observation, IoT apps implement such certificate pin-
ning via standard libraries (e.g., com.android.org.conscrypt.TrustMa
nagerImpl). To get around this, we use a dynamic code instrumenta-
tion tool Frida [10], which allows injecting binaries into an ongoing
process to remove the certificate pinning functions at runtime [28].
Fig. 3 shows the Device_ID verification process using traffic inter-
ception for a sample device. The top half of the figure shows partial
traffic traces when remote command is triggered, e.g., switching
ON a camera. The bottom half shows part of beaconing data sniffed
OTA during local communication. The string “CforkLLzBQeCIP==”
is common to both and thus confirmed as the Device_ID.
Traffic Hooking. We additionally employ function-level network
traffic inspection, i.e., traffic hooking, to uncover potential remote
commands before they are encrypted. We leverage the knowledge
that Android (since v7.0) usually handles HTTPS traffic data via the
native functions, e.g., java.net.SocketOutputStream.socketwrite0 and
com.android.org.conscrypt.ConscryptFileDescriptorSocket$SSLOutput
Stream, then modify tool r0capture [25] to hook into these func-
tions and inspect the data streams they handle. We use traffic hook-
ing as a backup heuristic analysis when encountering limitations
using traffic interception alone. The reader can check Table 2 in
Appendix B for details of remote commands uncovered methods for
each app.

4 Evaluation
We provide the evaluation results of the workflow introduced in
the previous section using data collected from 20 devices and their

Characterizing the Security Facets of IoT Device Setup IMC ’24, November 4–6, 2024, Madrid, Spain

Table 1: Evaluation summary of studied devices.

WiFi Setup only BLE Setup only WiFi and BLE Setup Support Out-of-band Setup (b) Beaconing (nb) Not Beaconing (via APK analysis)
(Device,App) Architecture Layer2 Encryption Layer5 Encryption ID Exposed Credentials Exposed

(D#1, A#1) CITM ✗ ✗ Device_ID (b) WiFi(b), Account Credentials (b)
(D#2, A#1) CITM ✗ ✗ Device_ID (b) WiFi(b), Account Credentials (b)
(D#3, A#2) CITM WPA2 ⃝ ⃝ ⃝
(D#4, A#2) CITM WPA2 ⃝ ⃝ ⃝
(D#5, A#3) CITM WPA2 (Break) ✗ Device_ID (b) WiFi (b), LAN Remote Commands (b)
(D#6, A#4) CITM WPA2 (Break) ✗ Device_ID (b) WiFi (b)
(D#7, A#5) CITM ✗ AES (Break) Device_ID (b) WiFi(nb)
(D#8, A#6) CITM ✗ TLS Device_ID (b) -
(D#9, A#7) CITM ✗ AES Partial Construct_ID (b) -
(D#10, A#8) CITM ✗ AES (Break) Device_ID (b) WiFi (nb)
(D#11, A#9) CITM ✗ J-PAKE - -
(D#12, A#9) CITM ✗ SSL - -
(D#13, A#9) CITM ✗ SSL Device_ID (b) (), - () - ()
(D#14, A#9) CITM ✗ SSL Device_ID (b) (), - () - ()
(D#15, A#10) CITM ✗ SSL Construct_ID (b) -
(D#16, A#11) AITM ✗ ✗ N.A. -
(D#17, A#12) AITM LE Security ⃝ N.A. ⃝
(D#18, A#13) CITM N.A. N.A. ⃝ ⃝
(D#19, N.A.) Not Cloud ✗ ✗ N.A. WiFi (b)
(D#20, A#14) CITM ✗ ✗ (encoded) Device_ID (nb) WiFi (nb)

✗: No encryption ⃝: Not allowed / Need for further study (e.g., no suspect info exposed) -: Attempted / Not found N.A.: Not applicable

corresponding apps. Some devices use the same app. Table 1 sum-
marizes the results, highlighting if encryption was used, at what
layer (L2/L5), and the information leakage observed. Among the
20 tested devices, two ((D#16, D#17)) are AITM devices while one
(D#19) is not cloud-enabled. The remaining 17 devices are CITM
platforms. In summary, from the set of 20 devices, 13 expose at least
one piece of defined sensitive information.
Safe Devices. We could not extract sensitive information from
seven of the devices we tested (D#3, D#4, D#11, D#12, D#16, D#17
D#18). The information shared by both WiFi devices, D#3 and D#4,
is protected using WPA2 as L2 encryption. Both passphrases are
encoded into QR codes, which are pre-shared to the app before
local communication is established. For each device, we verify that
the passphrases are not APK hard-coded and are difficult to brute
force. While D#11 and D#12 have no L2 encryption, they are instead
protected by key exchange-based encryption. D#11 uses J-PAKE
with the shared password exchanged through QR code scanning,
andD#12 uses TLS/SSL. To confirm this, we observe handshakes and
device certificates in decoded traffic.We also find an API call such as
java.security.KeyStore by statically analyzing the app, with the
private key stored in the private keyStore [12]. D#17 is the only BLE-
based device with L2 encryption (through LE Secure Connections
[4]). Key exchanges are introduced in BLE 4.2 to prevent long-
term key exposure, which we will consider unbreakable via passive
sniffing [4].

The final two safe devices do not fit our typical model, and
their information is protected using alternate means. D#16 is not
a CITM device and does not rely on an ID for coordination across
the platform. It only communicates with its app and does not share
any credentials. D#18 is unique because it has no explicit wireless
network connection during the setup phase. The app encodes the
home AP credentials into a QR code which the camera scans, i.e., it
uses an out-of-band channel to transfer the credentials.
Sensitive Information Leaking Devices. The remaining 13 de-
vices expose at least one type of sensitive information. Note that
we focus only on IDs that are shared throughout the platform,

i.e., meaningful for CITM devices. Because a Construct_ID may
be formed by multiple information fields (e.g., MAC address and
device serial number together), we only record the Construct_ID as
exposed when all the fields are obtainable. Briefly, eleven devices
expose IDs, eight devices expose credentials, and six devices expose
both.

ID Exposure. We identify the ID (Device or Construct) for 11
of the devices. For all identified Device_IDs, we verify that they
subsequently appear in remote commands.

Two devices hard-code their Device_ID (D#8) or partial Con-
struct_ID (D#9) as a suffix of the SSID used at setup. The SSID is
broadcast when the device presents as an AP, exposing the ID even
when subsequent communication is encrypted. Five devices (D#1,
D#2, D#10, D#13 (when setup via WiFi), and D#14 (when setup
via WiFi)) expose their Device_ID during setup as human readable
plaintext. Although D#13 and D#14 are marked as exposing their
Device_ID, we could identify this to be the case only when setup
via WiFi, although they both support setup via BLE as well.

Despite using encryption, after performing binary analysis, D#5
and D#15 expose their Device_ID. The L2 encryption (WPA) used
by D#5 has a weak passphrase, which is easily broken by brute force
or consulting online resources. D#15 exposes a Construct_ID before
switching to encrypted traffic (TLS). Pre-handshake setup traffic
is shared as gzip compressed data containing cloud_device_id,
certificates, and device_name. Once decoded, these three fields
are sufficient to produce the Device_ID.

With the APK inspection, we expose the Device_ID of two more
devices (D#7 and D#20). Both use custom protocols, which we can
decode after inspecting the APK. Specifically, D#20 utilizes the
SmartConfig framework [15] along with a custom encoding.

Credentials Exposure. After binary analysis, five devices (D#1,
D#2, D#5, D#6, D#19) were found to expose at least one piece of
credential information during setup. D#1 and D#2 transmit both
WiFi credentials and IoT app login credentials as plaintext. D#6 uses
the same weak L2 encryption scheme as D#5, resulting in WiFi cre-
dentials being exposed for both. Additionally, during the operation

IMC ’24, November 4–6, 2024, Madrid, Spain Han Yang, Carson Kuzniar, Chengyan Jiang, Ioanis Nikolaidis & Israat Haque

state, D#5 uses AES to protect commands issued while the app is on
the same network as the device. However, an exposed field called
api-key is hashed and used as the secret key. We verify this by
recreating the same key and forcing D#5 to operate as commanded
(power on, reset, etc.). D#19 also leaks WiFi credentials because it is
configured as a captive portal using plaintext HTTP. D#7, D#10, and
D#20 expose WiFi credentials with the knowledge obtained from
their APK. For D#20, the WiFi credentials are available along with
the Device_ID after discovering the encoding. Both D#7 and D#10
use symmetric encryption to protect the home-APWiFi credentials;
however, the encryption keys for both are derivable. D#7 uses an
MD5 hash of the token, which is initially transmitted in plaintext
as the private key. Comparably, D#10 creates its private key using
metainfo (sends from device to app as plaintext initially) and an
APK hard-coded string.

Other Information Exposure. In addition to the aforementioned in-
formation, we uncovered more identifiable information (presented
in Appendix C) from 19 of the devices, currently not categorized
as being sensitive but potentially useful for additional tasks, e.g.,
device fingerprinting.

Take Away andMitigation. To protect local communication, L2
encryption is effective and practical approach to shield higher-layer
payloads and protocols. For AP-based devices, a good practice is
using an out-of-band channel (QR code, printed WPA2 passphrase,
etc.) for , assuming the private key is unique for each device. The
adoption of LE Secure Connections is another reliable protection for
BLE devices. For application-level encryption, asymmetric cryptog-
raphy key exchange (e.g., as in TLS) is preferred, and if symmetric
encryption is used, the key must not be derivable from previously
transmitted information.

Discussion. Our validation method for inferring the Device_ID
is an empirical analysis by considering multiple different remote
commands; however, the most straightforward verification method
is a direct examination of the cloud source code. Without the knowl-
edge of the cloud-based code and following our assumptions of
inaccessible firmware, we are limited to app-side APK inspection.
Further, we also observed some communication between devices
and cloud after initial setup without using apps, which we sus-
pect also contains identifying information. In future work, we will
explore connections between this traffic and our analysis to fully
automate a sequence of tools following our methodology to check
the security of a large number of IoT platforms through the anal-
ysis of APK. The tool would automate time-consuming processes
allowing “grading” of IoT platforms on the basis of properties and
characteristics the apps reveal about those platforms.

5 Related Work
Platform-specific security: A body of work is not specific to
the setup phase but specific to an IoT platform. Several research
groups [11, 18] focus on the Amazon IoT platform, where they
check device-level (using firmware/SDK reverse engineering) or
application-level (e.g., skills) vulnerabilities. For the same platform,
Iqbal et al. check the process of users’ privacy data collection [16].
Samsung’s SmartThings platform is analyzed in [5, 29], where the
former develops an app taint analysis tool, and the latter extracts
security policies from IoT apps. We assume no access to the app

source code, leaving only the option to analyze the apps’ operation.
We follow a general approach across IoT platforms, assuming we do
not have source code or SDKs provided by the IoT platform vendors.
Equally, we assume no knowledge about the device firmware.
Vulnerabilities due to exposed identity: Three general types
of vulnerabilities have been reported in the literature, which also
apply to our study: (a) Remote Device Hijacking [7, 32] enables a
(remote) attacker to assume control of a device, by establishing a
binding ahead of the legitimate user during the remote binding state,
to associate the victim’s Device_ID with the attackers’ account. (b)
Command Injection [7, 32] allows an attacker to execute actions
in a device by constructing and sending unauthorized commands
using the victim’s Device_ID in the operation state. A special case
of this attack is to simulate an illegitimate remote reset. (c) Phantom
Device Construction [32] allows an attacker to introduce a simulated
device and inject fake sensor data and intercept commands, and
depending on the specific type of vulnerabilities can register the
device to the cloud, obtaining a corresponding Device_ID, and/or
bind the Device_ID with the attacker’s account.

Our work is nearest to [32], [7], and [9]. Zhou et al. [32] develop
a state model that confirms all investigated platforms do not strictly
guard the validity of the involved state transitions for a number
of conjectured reasons. Chen et al. [7] provide an analysis of the
downstream effects, assuming an attacker can access sensitive in-
formation. Instead, we focus on whether such sensitive information
can be acquired in the first place, evaluating which devices are
more vulnerable to sensitive information disclosure. Fezeu et al. [9]
dissect a new setup design flaw, assuming that the setup phase can
reveal sensitive information. This is consistent with our approach,
and also methodologically related insofar as app side analysis is
concerned. However, compared to three IoT vendors studied in [9],
we provide results for a diverse set of devices using a general and
widely applicable methodology.

6 Conclusion
We have examined the setup phase of 20 representative smart home
IoT devices for potential information leakage. We developed a semi-
automated general methodology to assess if, and what is the nature,
of the information leaked during setup. The results show that two-
thirds of the devices expose some form of sensitive information. The
results are alarming given that the devices chosen are commonplace
off-the-shelf devices available through online marketplaces – likely
to be owned by thousands of customers. Future work will focus on
fully automating the testing methodology we have introduced.

The proposed methodology will also benefit developers, ven-
dors, and researchers by applying strict criteria for accepting new
IoT devices as secure and for rectifying security issues of existing
ones. The acquired information from the setup phase may be used
for elaborate end-to-end attacks that are part of our future work.
End-to-end proof-of-concept attacks may require the involvement
of cloud services provided by vendors, possibly impacting many
users, thus presenting interesting practical and ethical issues on
how they can be studied. Further refinement of the methodology de-
scribed in this paper may allow the identification of more sensitive
information being leaked.

Characterizing the Security Facets of IoT Device Setup IMC ’24, November 4–6, 2024, Madrid, Spain

References
[1] Anand Agrawal and Rajib Ranjan Maiti. 2023. iTieProbe: Is Your IoT Setup

Secure against (Modern) Evil Twin? https://doi.org/10.48550/ARXIV.2304.12041
Publisher: arXiv Version Number: 2.

[2] Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Monrose. 2019. SoK:
Security Evaluation of Home-Based IoT Deployments. In 2019 IEEE Symposium
on Security and Privacy (SP). 1362–1380. https://doi.org/10.1109/SP.2019.00013

[3] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
FlowDroid: precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for Android apps. ACM SIGPLAN Notices 49, 6 (June 2014), 259–269.
https://doi.org/10.1145/2666356.2594299

[4] Bluetooth Special Interest Group. 2014. Bluetooth Core Specification Version 4.2.
https://www.bluetooth.com/specifications/specs/core-specification-4-2/

[5] Z. Berkay Celik, Leonardo Babun, Amit Kumar Sikder, Hidayet Aksu, Gang
Tan, Patrick McDaniel, and A. Selcuk Uluagac. 2018. Sensitive Information
Tracking in Commodity IoT. In 27th USENIX Security Symposium (USENIX Security
18). USENIX Association, Baltimore, MD, 1687–1704. https://www.usenix.org/
conference/usenixsecurity18/presentation/celik

[6] Jiongyi Chen, Menghan Sun, and Kehuan Zhang. 2019. Security Analysis of
Device Binding for IP-based IoT Devices. In 2019 IEEE International Conference
on Pervasive Computing and Communications Workshops (PerCom Workshops).
900–905. https://doi.org/10.1109/PERCOMW.2019.8730580

[7] Jiongyi Chen, Chaoshun Zuo, Wenrui Diao, Shuaike Dong, Qingchuan Zhao,
Menghan Sun, Zhiqiang Lin, Yinqian Zhang, and Kehuan Zhang. 2019. Your
IoTs Are (Not) Mine: On the Remote Binding Between IoT Devices and Users.
In 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN). IEEE, Portland, OR, USA, 222–233. https://doi.org/10.1109/
DSN.2019.00034

[8] Aldo Cortesi, Maximilian Hils, Thomas Kriechbaumer, and contributors. 2010–.
mitmproxy: A free and open source interactive HTTPS proxy. https://mitmproxy.
org/ [Version 10.3].

[9] Rostand A. K. Fezeu, Timothy J. Salo, Amy Zhang, and Zhi-Li Zhang. 2023.
Dissecting IoT Device Provisioning Process. http://arxiv.org/abs/2310.14125
arXiv:2310.14125 [cs].

[10] Frida. 2012. Frida: A dynamic instrumentation toolkit for developers, reverse-
engineers, and security researchers. https://github.com/frida.

[11] Dennis Giese and Guevara Noubir. 2021. Amazon echo dot or the reverberating
secrets of IoT devices. In Proceedings of the 14th ACM Conference on Security and
Privacy in Wireless and Mobile Networks (WiSec ’21). Association for Computing
Machinery, New York, NY, USA, 13–24. https://doi.org/10.1145/3448300.3467820

[12] Google. 2023. KeyStore (Java Platform SE). https://developer.android.com/
reference/java/security/KeyStore.

[13] Google. 2024. Shrink, obfuscate, and optimize your app. https://developer.android.
com/build/shrink-code.

[14] Hex-Rays SA. 2008. IDA Pro. https://hex-rays.com/ida-pro/.
[15] Texas Instruments. 2019. provisioning_smartconfig README. https://software-

dl.ti.com/ecs/CC3200SDK/1_5_0/exports/cc3200-sdk/example/provisioning_
smartconfig/README.html.

[16] Umar Iqbal, Pouneh Nikkhah Bahrami, Rahmadi Trimananda, Hao Cui, Alexan-
der Gamero-Garrido, Daniel J. Dubois, David Choffnes, Athina Markopoulou,
Franziska Roesner, and Zubair Shafiq. 2023. Tracking, Profiling, and Ad Tar-
geting in the Alexa Echo Smart Speaker Ecosystem. In Proceedings of the 2023
ACM on Internet Measurement Conference. ACM, Montreal QC Canada, 569–583.
https://doi.org/10.1145/3618257.3624803

[17] Jadx. 2004. jadx: Dex to Java decompiler. https://github.com/skylot/jadx.
[18] Christopher Lentzsch, Sheel Jayesh Shah, Benjamin Andow, Martin Degeling,

Anupam Das, and William Enck. 2021. Hey Alexa, is this Skill Safe?: Taking
a Closer Look at the Alexa Skill Ecosystem. In Proceedings 2021 Network and
Distributed System Security Symposium. Internet Society, Virtual. https://doi.
org/10.14722/ndss.2021.23111

[19] Changyu Li, Quanpu Cai, Juanru Li, Hui Liu, Yuanyuan Zhang, Dawu Gu, and
Yu Yu. 2018. Passwords in the Air: Harvesting Wi-Fi Credentials from SmartCfg
Provisioning. In Proceedings of the 11th ACM Conference on Security & Privacy in
Wireless and Mobile Networks. ACM, Stockholm Sweden, 1–11. https://doi.org/
10.1145/3212480.3212496

[20] Hui Liu, Juanru Li, and Dawu Gu. 2020. Understanding the security of app-in-
the-middle IoT. Computers & Security 97 (Oct. 2020), 102000. https://doi.org/10.
1016/j.cose.2020.102000

[21] Jouni Malinen. 2013. hostapd: IEEE 802.11 AP, IEEE 802.1X/W-
PA/WPA2/WPA3/EAP/RADIUS Authenticator. https://w1.fi/hostapd/.

[22] The netsniff-ng team. 2013. netsniff-ng. https://github.com/netsniff-ng/netsniff-
ng.

[23] Oberlo. 2024. US Smart Home Statistics (2019–2028). https://www.oberlo.com/
statistics/smart-home-statistics.

[24] Protoscope. 2022. Protoscope: An interactive tool for analyzing protocol buffers.
https://github.com/protocolbuffers/protoscope.

[25] R0capture. 2020. r0capture: A universal SSL/HTTPS interception for most An-
droid applications. https://github.com/r0ysue/r0capture.

[26] ReFirmLabs. 2015. Binwalk: Firmware Analysis Tool. https://github.com/
ReFirmLabs/binwalk.

[27] Nordic Semiconductor. 2019. nRF Sniffer for 802.15.4. https://github.com/
NordicSemiconductor/nRF-Sniffer-for-802.15.4.

[28] Maurizio Siddu. 2020. Frida multiple unpinning. https://gist.github.com/akabe1/
5632cbc1cd49f0237cbd0a93bc8e4452.

[29] Yuan Tian, Nan Zhang, Yueh-Hsun Lin, XiaoFeng Wang, Blase Ur, Xianzheng
Guo, and Patrick Tague. 2017. SmartAuth: User-Centered Authorization for
the Internet of Things. In 26th USENIX Security Symposium (USENIX Security
17). USENIX Association, Vancouver, BC, 361–378. https://www.usenix.org/
conference/usenixsecurity17/technical-sessions/presentation/tian

[30] Mengmei Ye, Nan Jiang, Hao Yang, and Qiben Yan. 2017. Security analysis of
Internet-of-Things: A case study of august smart lock. In 2017 IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS). IEEE, Atlanta,
GA, 499–504. https://doi.org/10.1109/INFCOMW.2017.8116427

[31] Yiwei Zhang, Siqi Ma, Tiancheng Chen, Juanru Li, Robert H. Deng, and Elisa
Bertino. 2024. EvilScreen Attack: Smart TV Hijacking via Multi-Channel Remote
Control Mimicry. IEEE Transactions on Dependable and Secure Computing 21, 4
(2024), 1544–1556. https://doi.org/10.1109/TDSC.2023.3286182

[32] Wei Zhou, Yan Jia, Yao Yao, Lipeng Zhu, Le Guan, Yuhang Mao, Peng Liu, and
Yuqing Zhang. 2019. Discovering and Understanding the Security Hazards in
the Interactions between IoT Devices, Mobile Apps, and Clouds on Smart Home
Platforms. In 28th USENIX Security Symposium (USENIX Security 19). USENIX
Association, Santa Clara, CA, 1133–1150. https://www.usenix.org/conference/
usenixsecurity19/presentation/zhou

[33] Qingsong Zou, Qing Li, Ruoyu Li, Yucheng Huang, Gareth Tyson, Jingyu Xiao,
and Yong Jiang. 2022. IoTBeholder: A Privacy Snooping Attack on User Habitual
Behaviors from Smart Home Wi-Fi Traffic. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies 7, 1 (March 2022), 1–26. https:
//doi.org/10.1145/3580890

[34] Chaoshun Zuo, Haohuang Wen, Zhiqiang Lin, and Yinqian Zhang. 2019. Auto-
matic Fingerprinting of Vulnerable BLE IoT Devices with Static UUIDs from
Mobile Apps. In Proceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security. ACM, London United Kingdom, 1469–1483.
https://doi.org/10.1145/3319535.3354240

A Ethics
This study has three main ethical considerations. First, this study
involves in-lab network traffic interception between popular smart
home apps and IoT cloud services, which may expose sensitive
API calls and give potential adversaries a chance to issue forged
commands to the cloud, harm the interests of legitimate users, etc.
Second, the developed scripts decrypt the collected traffic from local
communication. Thus, network traces of specific vendors may allow
adversaries to decrypt the sniffed traffic to access WiFi credentials,
Device_ID, and more. Hence, we do not provide open access to
either one of them but are willing to share privately with research
groups. Because the traces contain sensitive information about
our devices, we commit to keeping them in the lab until they are
destroyed. Also, we do not actively forge messages to the cloud
to avoid any potential impact on regular users. Finally, potential
attackers may explore the security weakness reported here. We thus
anonymize device and vendor information in a way that reduces
the ease of reproducibility of our results and also does not single out
particular vendors. In addition, we contacted each vendor whose
devices were found to exhibit at least one vulnerability and reported
our findings, allowing them to develop mitigation measures.

B Sensitive Information Verification Details
Table 2 summarizes devices and their apps along with the pinning
APIs we identified. We test 11 apps out of 14 (the rest do not ex-
pose information during local communication). App A#4 does not
utilize TLS/SSL-based communications, instead using a customized

https://doi.org/10.48550/ARXIV.2304.12041
https://doi.org/10.1109/SP.2019.00013
https://doi.org/10.1145/2666356.2594299
https://www.bluetooth.com/specifications/specs/core-specification-4-2/
https://www.usenix.org/conference/usenixsecurity18/presentation/celik
https://www.usenix.org/conference/usenixsecurity18/presentation/celik
https://doi.org/10.1109/PERCOMW.2019.8730580
https://doi.org/10.1109/DSN.2019.00034
https://doi.org/10.1109/DSN.2019.00034
https://mitmproxy.org/
https://mitmproxy.org/
http://arxiv.org/abs/2310.14125
https://github.com/frida
https://doi.org/10.1145/3448300.3467820
https://developer.android.com/reference/java/security/KeyStore
https://developer.android.com/reference/java/security/KeyStore
https://developer.android.com/build/shrink-code
https://developer.android.com/build/shrink-code
https://hex-rays.com/ida-pro/
https://software-dl.ti.com/ecs/CC3200SDK/1_5_0/exports/cc3200-sdk/example/provisioning_smartconfig/README.html
https://software-dl.ti.com/ecs/CC3200SDK/1_5_0/exports/cc3200-sdk/example/provisioning_smartconfig/README.html
https://software-dl.ti.com/ecs/CC3200SDK/1_5_0/exports/cc3200-sdk/example/provisioning_smartconfig/README.html
https://doi.org/10.1145/3618257.3624803
https://github.com/skylot/jadx
https://doi.org/10.14722/ndss.2021.23111
https://doi.org/10.14722/ndss.2021.23111
https://doi.org/10.1145/3212480.3212496
https://doi.org/10.1145/3212480.3212496
https://doi.org/10.1016/j.cose.2020.102000
https://doi.org/10.1016/j.cose.2020.102000
https://w1.fi/hostapd/
https://github.com/netsniff-ng/netsniff-ng
https://github.com/netsniff-ng/netsniff-ng
https://www.oberlo.com/statistics/smart-home-statistics
https://www.oberlo.com/statistics/smart-home-statistics
https://github.com/protocolbuffers/protoscope
https://github.com/r0ysue/r0capture
https://github.com/ReFirmLabs/binwalk
https://github.com/ReFirmLabs/binwalk
https://github.com/NordicSemiconductor/nRF-Sniffer-for-802.15.4
https://github.com/NordicSemiconductor/nRF-Sniffer-for-802.15.4
https://gist.github.com/akabe1/5632cbc1cd49f0237cbd0a93bc8e4452
https://gist.github.com/akabe1/5632cbc1cd49f0237cbd0a93bc8e4452
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tian
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tian
https://doi.org/10.1109/INFCOMW.2017.8116427
https://doi.org/10.1109/TDSC.2023.3286182
https://www.usenix.org/conference/usenixsecurity19/presentation/zhou
https://www.usenix.org/conference/usenixsecurity19/presentation/zhou
https://doi.org/10.1145/3580890
https://doi.org/10.1145/3580890
https://doi.org/10.1145/3319535.3354240

IMC ’24, November 4–6, 2024, Madrid, Spain Han Yang, Carson Kuzniar, Chengyan Jiang, Ioanis Nikolaidis & Israat Haque

encrypted UDP-based traffic for app-cloud communications. The re-
maining ten TLS/SSL-based apps apply certificate pinning. Themost
common pinning API, com.android.org.conscrypt.TrustManagerImp,
is used for all tested apps. We bypass the certificate pinning for
eight apps. We verify the bypass by the app’s ability to connect
to the Internet without certificate failure exceptions. Intercepting
the traffic of two apps (A#1 and A#8) fails as the identified pinning
APIs cannot fully cover the entire pinning technique used by these
vendors. In these cases, the vendor obfuscates the pinning APIs to
protect them from tests like ours, i.e., their apps do not trust our
proxy’s certificate.

Bypassing certificate pinning does not always allow a means to
extract fully understandable plaintext, as we find vendors utilize ad-
ditional levels of serialization, e.g., protobuf, encryption like RC4,
or even unknown vendor-specific raw data that requires deeper
protocol/crypto analysis. Still, some can be (partially) interpreted to
a degree that yields to our sensitive information analysis. For exam-
ple, D#20 has a high percentage of additional encryption/encoding
on the intercepted application payload that we cannot decode/de-
crypt. In this case, we must utilize traffic hooking to verify sensitive
information. Overall, we perform traffic hooking verification for
four apps (A#1, A#4, A#8, and A#14). We use ⃝ in Table 2 to refer
to app-device pairs that have no suspected information exposure
during local communications, preventing the need for further remote
command analysis. Finally, devices with no meaningful cloud-based
(or TLS/SSL-based) communication are referred to as N.A.

C Other Exposed Information
Table 3 summarizes additional exposed info during device setup. In
most cases, there is other self-explainatory information or infor-
mation that is easy to identify by accessing online resources like
vendor documents. The second column of the table displays the
potential fingerprint information each tested device exposes, with

14 devices revealing their device model and one device revealing
its device type during setup. The device model (fingerprinting) has
potential security implications since devices under the same model
type have similar network traffic behaviors even if the traffic is en-
crypted, enabling inferences about a device owner’s activities [33].
Specially, we find that all devices which support BLE setup (D#11 -
D#17) report a device_model as SCAN_RSP on advertising channels
before local communication, presumably for setup convenience. In
addition, although D#3 and D#4 have relatively secure local com-
munication, they nevertheless hard-code device_model in the SSID
of the device-AP. The remaining five devices (D#1, D#2, D#6, D#7,
D#10) report their device model during their local communication
to the app.

Some devices send metadata to their apps, including firmware
version, status, supported protocols, and certificates. Additionally,
there’s "side info" not directly related to the devices but may still be
of interest, such as location data and lists of nearby access points.
Among those, the most notable exposure we observed is the server
hostname that the app transmits to the device. This suggests that
the device may not have pre-configured trust anchors for cloud
servers built into their firmware. Instead, they might depend on
the app to specify which servers to trust during its setup. If con-
firmed, this could increase the risk of MITM attacks in device-cloud
communications. To further validate this analysis, a study of the
firmware would be necessary.

Finally, some devices leak information for which we have not
ascertained its usage during setup. We mark it as ✓ on the corre-
sponding rows of the table. This category of exposed information is
also potentially sensitive after further analysis beyond our current
methodology.

D GENERATIVE AI ACKNOWLEDGMENTS
We used ChatGPT to generate LaTeX formatted tables.

Characterizing the Security Facets of IoT Device Setup IMC ’24, November 4–6, 2024, Madrid, Spain

(Device,App) Pinning APIs Addressed Successful Bypass

(D#1, A#1)
javax.net.ssl.SSLContext
com.android.org.conscrypt.TrustManagerImpl
okhttp3.CertificatePinner

✗

(D#2, A#1)
javax.net.ssl.SSLContext
com.android.org.conscrypt.TrustManagerImpl
okhttp3.CertificatePinner

✗

(D#3, A#2) ⃝ ⃝
(D#4, A#2) ⃝ ⃝

(D#5, A#3)
com.android.org.conscrypt.TrustManagerImpl
javax.net.ssl.X509TrustManager

✓

(D#6, A#4) N.A. N.A.

(D#7, A#5)
javax.net.ssl.X509TrustManager
com.android.org.conscrypt.TrustManagerImpl
okhttp3.CertificatePinner

✓

(D#8, A#6)
com.android.org.conscrypt.TrustManagerImpl
sdk.pendo.io.m.e.a (obfuscated)

✓

(D#9, A#7)
com.android.org.conscrypt.TrustManagerImpl
okhttp3.CertificatePinner

✗

(D#10, A#8) com.android.org.conscrypt.TrustManagerImpl ✗

(D#11, A#9)

com.android.org.conscrypt.TrustManagerImpl
okhttp3.CertificatePinner
javax.net.ssl.X509TrustManager
apache.http.conn.ssl.AbstractVerifier

✓

(D#12, A#9)

com.android.org.conscrypt.TrustManagerImpl
okhttp3.CertificatePinner
javax.net.ssl.X509TrustManager
apache.http.conn.ssl.AbstractVerifier

✓

(D#13, A#9)

com.android.org.conscrypt.TrustManagerImpl
okhttp3.CertificatePinner
javax.net.ssl.X509TrustManager
apache.http.conn.ssl.AbstractVerifier

✓

(D#14, A#9)

com.android.org.conscrypt.TrustManagerImpl
okhttp3.CertificatePinner
javax.net.ssl.X509TrustManager
apache.http.conn.ssl.AbstractVerifier

✓

(D#15, A#10) com.android.org.conscrypt.TrustManagerImpl ✓

(D#16, A#11)
com.android.org.conscrypt.TrustManagerImpl
javax.net.ssl.X509TrustManager

✓

(D#17, A#12) ⃝ ⃝
(D#18, A#13) ⃝ ⃝
(D#19, N.A.) N.A. N.A.

(D#20, A#14)
com.android.org.conscrypt.TrustManagerImpl
okhttp3.CertificatePinner

✓

✓: Successful Bypass
✗: Failed Bypass

⃝: Not allowed / Not possible to identify (e.g., no suspect info exposed)
NA: Not Applicable

Table 2: Summary of IoT devices and their certificate pinning status.

IMC ’24, November 4–6, 2024, Madrid, Spain Han Yang, Carson Kuzniar, Chengyan Jiang, Ioanis Nikolaidis & Israat Haque

(Device,App) Fingerprinting Information Device Meta Side Info Extra Info

(D#1, A#1) device model; -
nearby AP list,

location,
server hostname;

✓

(D#2, A#1) device model; -
nearby AP list,

location,
server hostname;

✓

(D#3, A#2) device model; - - -
(D#4, A#2) device model; - - -
(D#5, A#3) - chipid; server hostname; -
(D#6, A#4) device model; device parameters (e.g., supported voltage); - -

(D#7, A#5) device model;
device firmware version,

bootloader version,
memory usage statistics;

nearby AP list,
location;

✓

(D#8, A#6) - device certificates; - -
(D#9, A#7) - device firmware version; encrypted session; -

(D#10, A#8) device model; device firmware version;
nearby AP list,
icon images;

-

(D#11, A#9) device model; device certificates; - -
(D#12, A#9) device model; device certificates; - -
(D#13, A#9) device model; device certificates; nearby AP list; ✓

(D#14, A#9) device model; device certificates; nearby AP list; ✓

(D#15, A#10) device model;
supported languages,

device firmware version,
build version;

- -

(D#16, A#11) device model; device firmware version; - ✓

(D#17, A#12) device model; - - -
(D#18, A#13) - - - -
(D#19, N.A.) device type; - captive portal meta info (HTML code); -
(D#20, A#14) - - - ✓

-: Attempted / Not found ✓: More info extracted / Not validated

Table 3: Other exposed information from the tested IoT platforms.

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	4 Evaluation
	5 Related Work
	6 Conclusion
	References
	A Ethics
	B Sensitive Information Verification Details
	C Other Exposed Information
	D GENERATIVE AI ACKNOWLEDGMENTS

